
ECE469: UEFI Booting

Aravind Machiry

1/16/2025

Recap: BIOS Booting

What happens, when we turn
on the machine?

1. UEFI:
a. Unified Extensible Firmware Interface.
b. Enables basic device access.

3

What is UEFI?

● Modular in design (uses generalized communication protocols)
● User friendly interface (sometimes with mouse support)
● Advanced security features (e.g. Secure Boot)
● Larger disk sizes (greater than 2TB)
● Only operates in protected mode
● Easier to maintain (written in C)
● Supports other boot options (e.g. Network Boot)

UEFI vs. BIOS
Legacy Bios UEFI Firmware

Architecture All vendors did something different Unified specifications (EDK1/EDK2)

Implementation Mostly Assembly C/C++

Memory Model 16-bit real mode 32/64-bit protected mode

Bootstrap MBR and VBR None

Partition MBR GPT

Disk I/O System Interrupts UEFI services

Bootloaders Bootmgr and winload.exe Bootmgfw.efi and winload.efi

OS Interaction BIOS Interrupts UEFI services

Boot Configuration CMOS Memory UEFI NVRAM variable

UEFI Boot Phases

Security

● Executes hardware specific firmware.
○ Written in assembly (16-/32-bit) (SecMain).

● Creates the foundation for the root-of-trust methodology.
○ Authenticates the Pre-EFI Initialization (PEI) Foundation code.

● Creates temporary memory using CPU caches.
● Locates the PEI foundation on the SPI flash.
● The SEC phase is executed on the SPI flash.

○ Address entry point is the reset vector at address space 4GB - 0x10
○ Only the bootstrap processor(BSP) is running.

https://github.com/cglosner/edk2/blob/710f83b79d6eab641401c054b2f40f6c630f8cd5/IntelFsp2Pkg/FspSecCore/SecMain.c#L52

Pre-Environment Initialization

● The boot code is loaded from the SPI flash in this phase (PeiCore).
● It initializes the permanent memory, but until then everything is executed in

the CPU cache. (InitializeMemory)
● This is where the runtime and boot services begin execution. (InitialzeDXE ->

DXELoadCore)
● Creates hand off block (HOB) list for later phases.
● The final module is the block to load the next phase (PeimInitializeDxeIpl).
● The most architecture depend part of the code.

https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/Pei/PeiMain/PeiMain.c#L164
https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/Pei/Memory/MemoryServices.c#L24
https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/Pei/PeiMain/PeiMain.c#L506
https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/DxeIplPeim/DxeLoad.c#L247
https://github.com/cglosner/edk2/blob/710f83b79d6eab641401c054b2f40f6c630f8cd5/MdeModulePkg/Core/DxeIplPeim/DxeLoad.c#L68

Driver Execution Environment

● This is the main phase of the boot process. (EntryPoint)
● The System Management Mode (SMM) is initialized during this phase.
● SMM is executed in Ring -2, while everything else is in Ring 0.
● The boot and runtime services finish initialization during this phase.
● All images are loaded:

○ Driver - permanent
○ Application - temporary

● Images are loaded and executed in two ways:
○ Through the DriverOrder option in the NVRAM
○ The default boot order

https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/Dxe/DxeMain/DxeMain.c#L233

What is NVRAM?
● The NVRAM stores the UEFI variable.
● The UEFI variable contains all of the variables and parameters needed

throughout the boot process :

BootOrder An in-order array of 16-bit integers that
refer to the boot order.

Boot#### One of the devices that is to be booted
and the #### refers to the hex
identification number.

DriverOrder An in-order array of 16-bit integers that
refer to the driver order.

Driver#### A driver that is to be loaded and the
refers to the hex identification
number.

UEFI Services
● This is an important component of the boot process.
● It consists of two components:

○ Boot Services
○ Runtime Services

● The Boot Services run in physical addressing mode while runtime services
run in both physical and virtual addressing.

● These services begin initialization in the PEI phase when the permanent
memory is established, but the initialization finishes during the DXE phase.

Boot Services
● Boot services are used to create, manage, and stop events during the boot

process (All Services):
○ Protocol services
○ Device Protocols - how to communicate between different peripherals
○ Device handle-based boot services
○ Global boot service interface

● These services are important for communicating between drivers.
● CopyMem, which is used when copying the drivers into permanent memory or

into the SMRAM is a common example.
● Primarily needed for setting everything up for the OS loader.
● They are terminated when ExitBootServices() is called in the OS Loader.

https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/Dxe/DxeMain/DxeMain.c#L41
https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/Dxe/DxeMain/DxeMain.c#L751

Runtime Services
● These are system call functions that create some abstraction between the

kernel and the hardware.
● The service calls don’t require interrupts to be called but do use them by

default.
● The memory where the runtime services are stored can’t be modified by the

kernel because they interact with the hardware.
● Part of the Runtime code is stored in the SMRAM, the part pertaining to the

direct hardware modification.
● The function SMMLoadImage is used to load images into SMRAM.

https://github.com/cglosner/edk2/blob/79f2734e5a7bc2e5256eb0e599f45407855159c7/MdeModulePkg/Core/PiSmmCore/Dispatcher.c#L309

System Management Mode (SMM)
● Operates inside protected memory called SMRAM
● It is similar to Arm’s TrustZone
● It has the highest privilege on the system (Ring -2)
● Operates in 16-bit mode
● It is responsible for direct hardware controls and power management

○ Flash System Firmware, write to the MMIO, etc
● A System Management Interrupt (SMI) is required to call anything inside of

the SMM

What is SMRAM?
● The SMRAM is apart of the DRAM
● SMBASE is a fixed address in a CPU register

○ Used to find the starting location of the SMRAM
● Only the SMI handler can modify the SMRAM

○ That means anyone can read the SMRAM
● There is a specific bit called the D_LCK bit

○ If set then no SMRAM configuration bits can be changed

Boot Device Selection
● This is when the boot partition is selected.
● It is either defaulted to the active partition or will allow an option if there

are multiple operating systems present.
● It will also handle executing the boot manager and OS drivers from the

system partition.
● The boot manager utilizes the DXE drivers that were created to complete

its tasks.
● The OS loader is stored on the EFI system partition that uses a GUID

Partition Table instead of the traditional MBR.

GPT vs. MBR

● GUID Partition Table (GPT)
can support a much larger
number of partitions.

● Utilizes a 16-byte identification
number.

● System partition path is stored
in the NVRAM.

UEFI vs. BIOS (Review)
Legacy Bios UEFI Firmware

Architecture All vendors did something different Unified specifications (EDK1/EDK2)

Implementation Mostly Assembly C/C++

Memory Model 16-bit real mode 32/64-bit protected mode

Bootstrap MBR and VBR None

Partition MBR GPT

Disk I/O System Interrupts UEFI services

Bootloaders Bootmgr and winload.exe Bootmgfw.efi and winload.efi

OS Interaction BIOS Interrupts UEFI services

Boot Configuration CMOS Memory UEFI NVRAM variable

Summary!

Reserved for
BIOS

UEFI Firmware

Mapped Code

MMIO and other
peripheral Mappings

Scratch Memory for
different device drivers

The extra memory provides
more flexibility in system
configurations

